The Mars Science Laboratory and its rover centerpiece, Curiosity, is the most ambitious Mars mission yet flown by NASA. The rover landed on Mars in 2012 with a primary mission to find out if Mars is, or was, suitable for life. Another objective is to
learn more about the Red Planet’s environment.

In March 2018, it celebrated 2,000 sols (Mars days) on the planet, making its way from Gale Crater to Aeolis Mons (colloquially called Mount Sharp), where it has looked at geological information embedded in the mountain’s layers. Along the way, it also has found extensive evidence of past water and geological change.

[For the latest news about the mission, follow’s Mars Science Lab Coverage.]
As big as an SUV

One thing that makes Curiosity stand out is its sheer size: Curiosity is about the size of a small SUV. It is 9 feet 10 inches long by 9 feet 1 inch wide (3 m by 2.8 m) and about 7 feet high (2.1 m). It weighs 2,000 lbs. (900 kilograms). Curiosity’s wheels have a 20-inch (50.8 cm) diameter.

Engineers at NASA’s Jet Propulsion Laboratory designed the rover to roll over obstacles up to 25 inches (65 centimeters) high and to travel about 660 feet (200 m) per day. The rover’s power comes from a multi-mission radioisotope thermoelectric
generator, which produces electricity from the heat of plutonium-238’s radioactive decay.

Related: How Long Does It Take to Get to Mars
Science goals

Website link

According to NASA, Curiosity has four main science goals in support of the agency’s Mars exploration program:

Determine whether life ever arose on Mars.
Characterize the climate of Mars.
Characterize the geology of Mars.
Prepare for human exploration.

The goals are closely interlinked. For example, understanding the current climate of Mars will also help determine whether humans can safely explore its surface. Studying the geology of Mars will help scientists better understand if the region near Curiosity’s landing site was habitable. To assist with better meeting these large goals, NASA broke down the science goals into eight smaller objectives, ranging from biology to geology to planetary processes.

In support of the science, Curiosity has a suite of instruments on board to better examine the environment. This includes:

Cameras that can take pictures of the landscape or of minerals close-up: Mast Camera (Mastcam), Mars Hand Lens Imager (MAHLI) and Mars Descent Imager (MARDI).
Spectrometers to better characterize the composition of minerals on the Martian surface: Alpha Particle X-Ray Spectrometer (APXS), Chemistry & Camera (ChemCam), Chemistry & Mineralogy X-Ray Diffraction/X-Ray Fluorescence
Instrument (CheMin), and Sample Analysis at Mars (SAM) Instrument Suite.
Radiation detectors to get a sense of how much radiation bathes the surface, which helps scientists understand if humans can explore there – and if microbes could survive there. These are Radiation Assessment Detector (RAD) and Dynamic Albedo
of Neutrons (DAN).
Environmental sensors to look at the current weather. This is the Rover Environmental Monitoring Station (REMS).
An atmospheric sensor that was primarily used during landing, called Mars Science Laboratory Entry Descent and Landing Instrument (MEDLI).