In recent years the mushrooming power, functionality and ubiquity of computers and the Internet have outstripped early forecasts about technology’s rate of advancement and usefulness in everyday life. Alert pundits now foresee a world saturated with powerful computer chips, which will increasingly insinuate themselves into our gadgets, dwellings, apparel and even our bodies.
Yet a closely related goal has remained stubbornly elusive. In stark contrast to the largely unanticipated explosion of computers into the mainstream, the entire endeavor of robotics has failed rather completely to live up to the predictions of the 1950s. In those days experts who were dazzled by the seemingly miraculous calculational ability of computers thought that if only the right software were written, computers could become the articial brains of sophisticated autonomous robots. Within a decade or two, they believed, such robots would be cleaning our oors, mowing our lawns and, in general, eliminating drudgery from our lives.
Advertisement
Obviously, it hasn’t turned out that way. It is true that industrial robots have transformed the manufacture of automobiles, among other products. But that kind of automation is a far cry from the versatile, mobile, autonomous creations that so many scientists and engineers have hoped for. In pursuit of such robots, waves of researchers have grown disheartened and scores of start-up companies have gone out of business.
It is not the mechanical “body” that is unattainable; articulated arms and other moving mechanisms adequate for manual work already exist, as the industrial robots attest. Rather it is the computer-based articial brain that is still well below the level of sophistication needed to build a humanlike robot.
Nevertheless, I am convinced that the decades-old dream of a useful, general-purpose autonomous robot will be realized in the not too distant future. By 2010 we will see mobile robots as big as people but with cognitive abilities similar in many respects to those of a lizard. The machines will be capable of carrying out simple chores, such as vacuuming, dusting, delivering packages and taking out the garbage. By 2040, I believe, we will nally achieve the original goal of robotics and a thematic mainstay of science citron: a freely moving machine with the intellectual capabilities of a human being.
Reasons for Optimism
In light of what I have just described as a history of largely unfilled goals in robotics, why do I believe that rapid progress and stunning accomplishments are in the offing? My condense is based on recent developments in electronics and software, as well as on my own observations of robots, computers and even insects, reptiles and other living things over the past 30 years.
The single best reason for optimism is the soaring performance in recent years of mass-produced computers. Through the 1970s and 1980s, the computers readily available to robotics researchers were capable of executing about one million instructions per second (MIPS). Each of these instructions represented a very basic task, like adding two 10-digit numbers or storing the result in a species location in memory.
In the 1990s computer power suitable for controlling a research robot shot through 10 MIPS, 100 MIPS and has lately reached 50,000 MIPS in a few high-end desktop computers with multiple processors. Apple’s MacBook laptop computer, with a retail price at the time of this writing of $1,099, achieves about 10,000 MIPS. Thus, functions far beyond the capabilities of robots in the 1970s and 1980s are now coming close to commercial viability.
For example, in October 1995 an experimental vehicle called Navlab V crossed the U.S. from Washington, D.C., to San Diego, driving itself more than 95 percent of the time. The vehicle’s self-driving and navigational system was built around a 25-MIPS laptop based on a microprocessor by Sun Microsystems. The Navlab V was built by the Robotics Institute at Carnegie Mellon University, of which I am a member. Similar robotic vehicles, built by researchers elsewhere in the U.S. and in Germany, have logged thousands of highway kilometers under all kinds of weather and driving con¬ditions. Dramatic progress in this field became evident in the DARPA Grand Challenge contests held in California. In October 2005 several fully autonomous cars successfully traversed a hazard-studded 132-mile desert course, and in 2007 several successfully drove for half a day in urban traffic ¬conditions.
In other experiments within the past few years, mobile robots mapped and navigated unfamiliar office suites, and computer vision systems located textured objects and tracked and analyzed faces in real time. Meanwhile personal com¬puters became much more adept at recognizing text and speech.
Still, computers are no match today for humans in such functions as recognition and navigation. This puzzled experts for many years, because computers are far superior to us in calculation. The explanation of this apparent paradox follows from the fact that the human brain, in its entirety, is not a true programmable, general-purpose computer (what computer scientists refer to as a universal machine; almost all computers nowadays are examples of such machines).
To understand why this is requires an evolutionary perspective. To survive, our early ancestors had to do several things repeatedly and very well: locate food, escape predators, mate and protect offspring. Those tasks depended strongly on the brain’s ability to recognize and navigate. Honed by hundreds of millions of years of evolution, the brain became a kind of ultra-sophisticated—but special-¬purpose—computer.
Advertisement
The ability to do mathematical calculations, of course, was irrelevant for survival. Nevertheless, as language trans¬formed human culture, at least a small part of our brains evolved into a universal machine of sorts. One of the hallmarks of such a machine is its ability to follow an arbitrary set of instructions, and with language, such instructions could be transmitted and carried out. But because we visualize numbers as complex shapes, write them down and perform other such functions, we process digits in a monumentally awkward and inefficient way. We use hundreds of billions of neurons to do in minutes what hundreds of them, especially “rewired” and arranged for calculation, could do in milliseconds.
A tiny minority of people are born with the ability to do seemingly amazing mental calculations. In absolute terms, it’s not so amazing: they calculate at a rate perhaps 100 times that of the average person. Computers, by comparison, are millions or billions of times faster.
Can Hardware Simulate Wetware?
The challenge facing roboticists is to take general-¬purpose computers and program them to match the largely special-purpose human brain, with its ultra-optimized perceptual inheritance and other peculiar evolutionary traits. Today’s robot-controlling computers are much too feeble to be applied successfully in that role, but it is only a matter of time before they are up to the task.
Implicit in my assertion that computers will eventually be capable of the same kind of perception, cognition and thought as humans is the idea that a sufficiently advanced and sophisticated arterial system—for example, an electronic one—can be made and programmed to do the same thing as the human nervous system, including the brain. This issue is controversial in some circles right now, and there is room for brilliant people to disagree.
At the crux of the matter is the question of whether biological structure and behavior arise entirely from physical law and whether, moreover, physical law is computable—that is to say, amenable to computer simulation. My view is that there is no good scientist evidence to negate either of these propositions. On the contrary, there are compelling indications that both are true.
Subscribe and get notified on the
latest updates and offers